分频器的作用:在一个扬声器系统里,人们把箱体、分频电路、
扬声器单元称为扬声器系统的三大件,而分频电路对扬声器系统能否高质量地还原电声信号起着极其重要的作用。尤其在中、高频部分,分频电路所起到的作用就更为明显。其作用如下:
1、合理地分割各单元的工作频段;
2、合理地进行各单元功率分配;
3、使各单元之间具有恰当的相位关系以减少各单元在工作中出现的声干涉失真;
4、利用分频电路的特性以弥补单元在某频段里的声缺陷;
5、将各频段圆滑平顺地对接起来。
显然,分频电路的这些作用已被人们所认识和接受。
1)分频点指分频器高通、带通和低通滤波器之间的分界点,常用频率来表示,单位为赫兹。分频点应根据各频段扬声器单元或音箱的频率特性和功率分配来具体确定
2)分频点的选择:
1、考虑中低单元指向性实用边界频率f=345/d(d=单元振膜有效直径)。通常8”单元的边界频率为2k,6.5”单元的边界频率为2.7k,5”单元为3.4k,4”单元为4.3k。也就是说使用上述单元,其分频点不能大于各单元所对应的实用边界频率。
2、从
高音单元谐振频率考虑,分频点应大于三倍的
谐振频率。也就是说从高音单元的角度出发,通常分频点应大于2.5k。
3、考虑中低音单元高端响应Fh,通常分频点不应大于1/2Fh。实际上,二分频音箱上述条件很难得到同时满足。这时设计者应在这三者中有一个比较好的折中选择。但必须强调的是,第一个条件即实用边界频率应该优先满足。
4、三分频的情况下,通常应将两个分频点隔得愈远(应在三个倍频程以上),组合后的系统响应会变得愈好。否则,将会出现复杂的干扰辐射现象。
5、
低音与中音的分频点应考虑人声声像定位的问题。应使人声的重放尽可能由中音单元来承担,以避免人声的声像定位音色发生过大的变化。这一点往往容易被设计者所忽视。通常这一分频点应为200-300Hz
我们知道,人可以听到的声音的
频率范围是在20Hz—20kHz之间,祈望仅使用一只扬声器就能够保证放送20Hz—20kHz这样宽频率的声音是很难做到的,因为这会在技术上存在各种各样的问题和困难。所以,在通常情况下,高质量的放音系统为了保证再现声音的频率响应和频带宽度,在专业范畴内大都采用高低音分离式音箱放音。而采用高低音分离式音箱放送声音时,就必然要对声音按频段分离,将声音按频率分段的个数就是声音分频数。
声音的分频主要是受扬声器的控制,因为绝大多数扬声器都有自己最适合的频率范围,真正的高质量全频扬声器非常少见并且价格极端昂贵。同时为了克服不同频率声音扬声器引起的切割失真和减少同一音箱中的不同扬声器之间产生的声音干涉现象,必须对声音进行分频,将不同频段的声音送入不同的扬声器。
从
分频方式看可以分为两种,一种是
主动分频(PassiveCrossover),或者叫
电子分频,也可以叫外置分频、有源分频;另一种是
被动分频(ActiveCrossover),或者叫功率分频,也可以叫内置分频、无源分频。主动分频是指分频器不在音箱内部,而在功率放大之前,由于此时声音信号很弱,因此容易将声音彻底分频,缺点是相应的电子线路分频点较为固定,不容易和不同扬声器配合,常见于高端和专业音响,随着多路功放的普及,主动分频方式比以前普及很多。被动分频是指分频器在音箱内,此时声音信号已经经过放大,分频电路会造成一定干扰,但音箱可以适用于不同功放。
最简单的分频就是二分频,将声音分为高频和低频,分频点需要高于低音喇叭上限频率的1/2,低于高音喇叭下限频率的2倍,一般的分频点在2K到5K之间。但是这样分频对低音照顾仍然不够完善,因为低音为了获得更好效果,往往需要单独处理,并且扬声器的切割失真对低音的影响也最大,因此近些年三分频逐渐流行起来。三分频是将声音分为低音、中音和高音,有两个分频点,低音分频点一般在200Hz以下,或者120Hz,甚至更低,高音分频点一般为2Hz-6KHz。此外也有少量的四分频或者多分频系统。显然更多分频数理论上更有利于声音的还原,但过多的分频点会造成整体成本上升,并且实际效果提升有限,因此常见的分频数仍然是二分频和三分频.
2-4分频及任意分频(N)电路
用于N=2-4分频比的电路,常用双D-FF或双JK-FF器件来构成,分频比n>4的电路,则常采用计数器(如可预置计数器)来实现更为方便,一般无需再用单个FF来组合。
下图的分频电路输出占空比均为50%,可用D-FF,也可用JK-FF来组成,用JK-FF构成分频电路容易实现并行式同步工作,因而适合于较高频的应用场合。而FF中的引脚R、S(P)等引脚如果不使用,则必须按其功能要求连接到非有效电平的电源或地线上。
图2是3分频电路,用JK-FF实现3分频很方便,不需要附加任何逻辑电路就能实现同步计数分频。但用D-FF实现3分频时,必须附加译码反馈电路,如图2所示的译码复位电路,强制计数状态返回到初始全零状态,就是用NOR门电路把Q2,Q1=“11B”的状态译码产生“H”电平复位脉冲,强迫FF1和FF2同时瞬间(在下一时钟输入Fi的脉冲到来之前)复零,于是Q2,Q1=“11B”状态仅瞬间作为“毛刺”存在而不影响分频的周期,这种“毛刺”仅在Q1中存在,实用中可能会造成错误,应当附加时钟同步电路或阻容低通滤波电路来滤除,或者仅使用Q2作为输出。D-FF的3分频,还可以用AND门对Q2,Q1译码来实现返回复零。 |
图3是可逆、可预置计数器CD4029构成的任意N分频减法计数电路,U/D接“L”电平进行减法计数,B/D接“L”电平按BCD输出码进行计数,低位的Co进位到高位的CT输入进行进位计数,按BCD计数连接可实现0-299分频,按二进制连接(B/D)端连到VDD上)可实现0-8192分频,分频比N值是由并行预置输入端P3-P0所加的数字电平来决定的,可在上述范围内任意设置。 |
该电路每当各级CD4029均计数到全零状态时,各级的Co=“L”电平,通过3输入NOR门译码就在PE端出现正脉冲(tw宽),将各级预置设定数字(图示123)并行置入内部,再开始新的计数循环,PE端出现的瞬变脉冲就是分频后的输出信号,其周期是计数时钟CLK(即fin)周期的N倍,脉宽tw是由计数器延迟时间和NOR门延时之和来决定的,用CD4029和CD4025(三NOR)情况大约tw=0.9us(VDD=5V时),如果需要更宽的脉冲分频输出,可以使用单稳延时电路如CD4528/4538来作定时展宽。 |